
 ShopBot Programming Handbook Page -1-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

Part File Programming Handbook for

the OpenSBP
®

 Language

OpenSBP® Language Part Files offer virtually unlimited control of your

tool and the execution of cutting instructions. This document describes

working with Part Files and how to use the additional OpenSBP®

‘Program Statements’ to help control or program how a Part File runs.

ShopBot Tools, Inc.

3333 Industrial Drive

Durham, NC 27704

919.680.4800 or 888.680.4466

 ShopBot Programming Handbook Page -2-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

CONTENTS

Part File Programming Handbook for the OpenSBP® Language ... 1
OpenSBP® Part Files (.sbp) ... 3

What's in a Part File? ... 3
Using the Editor .. 4
The Part File Layout ... 4
Introducing Part File Programming Statements ... 5
Nesting or Embedding Part Files ... 5

Math, User Variables (&), and System Variables(%) ... 7
Using Variables ... 7

Types of Program Statements .. 10
Control/Flow Statements .. 10
Conditional Branching Statements ... 10
Input/Output Statements ... 10
File Statements ... 11

Reference: Part File Programming Control Statements .. 12
Additional Part File Programming Considerations .. 28

Movement Blocks ... 28
Structuring Your Files .. 29
Adding Setup Lines to the Start of a File ... 29
Troubleshooting difficulties in Part Files .. 29

Why We Have a ShopBot Part File Format 31
ShopBot Log Files ... 32
Advanced Start-Up Information .. 33

Windows Command Line Options…Controlling the ShopBot software from outside programs (a)
 ... 33
Windows Registry Interface…Controlling the ShopBot software from outside programs (b) 34
Virtual Tool System ... 35

System Variables [use as %(sys var#)] .. 36

 ShopBot Programming Handbook Page -3-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

OpenSBP® Part Files (.sbp)

You could control your ShopBot tool entirely through keyboard input using the OpenSBP®,

2-Letter Commands. However, the real potential of CNC and robotics tools is achieved by

supplying your tool with a list of instructions to carry out complex cutting and machining

movements. Such intricate cutting capability is why a robotics tool can do things you can't -
- and it can do them hundreds or thousands of times without a glitch.

What's in a Part File?

The list of instructions is provided through Part Files that you write in a Text

Editor or generate in other software such as PartWorks, and bring to ShopBot.

This list of instructions can be just a list of Commands you might enter from the

keyboard using the two key-stroke shortcuts. On each line of the list there is the

two-letter Command, followed in most cases by parameters giving the details of
the action.

A Part File can be a short and simple list that looks like the following:

JZ, .5

J2, 10, 10

MZ, -.25

M2, 20, 10

M2, 20, 5

M2, 10, 5

M2, 10, 10

JZ, .5

Here we have instructed your tool to cut a rectangle. First (the JZ, .5), we pull

the bit up to make sure it is not in the material when we make our positioning

move (typically, you set up your Z axis with the convention that the top of your

material is the Z location 0). Next, the tool will Jog to the XY location 10, 10 (we

will assume that the ShopBot is configured for Absolute Distance moves). Then

the bit is moved down to -.25 (we use a ‘M’ove so that we will be moving at

Move Speed now because we are cutting into material), and will drill into the

material and be ready for our cut. There are then 4 cutting speed moves (M2's)

that will define a 10 x 5 rectangle, with the starting point being in the upper left

corner of the rectangle, and going around the rectangle in a clockwise direction

(if you were using a 1/4in bit, this would create a cut-out that is actually 9.75 x
4.75 because the center of the bit would be following the specified path).

A OpenSBP® Part file can also, however, also contain Programming Commands

that can only appear in Part files and can’t be entered at the keyboard…that’s

what the rest of this manual is about.

 ShopBot Programming Handbook Page -4-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

Using the Editor

The files that ShopBot reads are in what is called 'text' format. That means you

can look at them and edit them with any text editor or word-processor, however

we recommend using the SbEdit text editor that comes with the ShopBot

software. You can open the ShopBot Editor by typing [FE] or open a new blank

part file by typing [FN]. You can also start SbEdit from the Windows ‘Start’

menu or by just double clicking on any ShopBot Part File. If you do use your own

word-processor, make certain that after you have created or modified a Part File

that it is re-saved in generic 'text' format and not a special format of your word-

processor. The file name extension for a ShopBot Part file is '.sbp' . Other

ShopBot related files have file extensions that start with '.sb_' and end with

another letter for descriptive convenience. The file extensions '.ini', '.opt', and

'.sbd' have special purposes and are discussed elsewhere, but these too are text
files in ShopBot Part File format.

The Part File Layout

A Part File can consist of a single line or up to a million lines, but can have only

one Command per line. You can generally use upper and lower case letters to

your own preference. You can indent and skip lines and generally add white
space to help structure your files to make them easy for you to read.

And, you can insert comments to document for you or others what you're up to

in a particular file. To use a comment, just type an ' {apostrophe} and

everything after it in the line will be ignored when the file is read by ShopBot.

Details for the use of remarks and comments can be found under “REM” in the

Reference section. Also note the very useful special case of a comment after a
“PAUSE” that provides a quick message to the tool user.

To really appreciate the possibilities for file layout, take a look at the sample files

included in your c:\SbParts folder that was installed with your software. These

sample files illustrate various formatting and organizational techniques. The
sample files are the files that start with the name 'S_' (for ‘Sample’).

Note that when using ShopBot Commands, if any parameter follows the

Command, the two letters of the Command are always followed by either a

comma or at least one space. See the following example (note use of
comments):

M2, 3, 4.2 'ok ... using comma as Command separator

M2 3, 4.2 'ok ... using space as Command separator

M23, 4.2 'WRONG ... no separator

M2,, 4.2 'This commands moves Y to 4.2 because first

 comma is the separator (no X value)

M2 , 4.2 'This commands moves Y to 4.2 because space

 is the separator (no X value)

M2, 4.2 'This commands moves X to 4.2 because comma

 is the separator (thus no Y value)

M2 4.2 'This commands also moves X to 4.2 (no Y value)

 ShopBot Programming Handbook Page -5-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

During execution of a Part File, information about the files being opened and run

are displayed in the main window. This display identifies which line in each file is

currently being read or executed.

Introducing Part File Programming Statements

Beyond the execution ShopBot Commands there is an additional set of

commands that can be used from within Part Files. We call these commands

Program Statements. These Programming Statements constitute additional

instructions that provide numerous capabilities and functions from within Part

Files. They add flexibility to what you can do in files. These additional control

statements, when used in ShopBot Part files, amount to a mini programming

language and they are the primary topic of this Handbook.

The Program Statements that ShopBot uses are modeled after similar functions

in the BASIC computer programming language. Some people already will be

familiar with the uses of such statements and what you can do with them.

Others will find the following discussion full of new stuff. In general, though,

Program Statements just give you enhanced ways to give your tool a list of

instructions. If you get involved in more serious programming of your ShopBot

using the Part File Language, one thing to keep in mind about this kind of

programming is that there are usually many ways to accomplish the same thing

... you'll probably be able to find one approach or another that works well for

you.

Nesting or Embedding Part Files

One Part File can call up and execute another Part File. You simply use the [FP]

Command in the first file in order to start the second file. When the second file

finishes execution, action returns to the next line of the first file. This process of

starting one file with another is referred to as nesting or embedding files.

Typically, you might have a 'master' Part File that calls up various components

that will be cut from the piece of material currently on your table. This master

Part File can position the tool for cutting the components and thus manage the

layout of the project. An example of placing a single part in multiple locations is

described in the sample code here. You use the 'offset' function in the [FP]

Command to cause the file to be cut from the location that the master file moves

the tool to. Thus you can use nesting to place different parts of a project in their
correct location.

'Start of master Part File ALLPARTS.SBP

 M2, 10, 4 'move to location to start first part

 FP, MYPART.SBP , , , , , 2 'execute with 2D offset

 M2, 20, 4 'move to start of second part

 FP, MYPART.SBP , , , , , 2 'execute with 2D offset

 M2, 30, 4 '... and so on

 FP, MYPART.SBP , , , , , 2

 M2, 40, 4

 FP, MYPART.SBP , , , , , 2

You can repeat nesting of files inside other files multiple times up to 8 levels

deep. This means you can call up a part, and then within each part call up say a

 ShopBot Programming Handbook Page -6-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

repeated procedure such as a drilling and countersinking routine. This process of

nesting is an example of what in programming would be called a sub-routine,

sub-program, or procedure. Sub-routines are useful for organization and

efficiency, and more generally provide a way to 'structure' your Part File work.

You can have subroutines that you use with a variety of master Part Files. As an

example from our shop, we have a drilling/countersinking routine that we use for

many different purposes including making the table-tops for ShopBots. We have

saved this counter-sinking routine, which is for just one hole, as a Part File. Then

we call it as a sub-routine within any file in which we need to do drilling or

countersinking.

 ShopBot Programming Handbook Page -7-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

Math, User Variables (&), and System Variables(%)

When creating a PART File, you can use mathematical expressions, including variables to

specify parameters just as you can when entering parameters at the main menu. Most

mathematical functions are supported. When in doubt, try them out with the ShopBot

Calculator first. Variables can also be used in Programming Statements.

Using Variables

When creating a part file, it is sometimes useful to indicate a value as a

'variable' rather than as a fixed number. Using a 'variable' just means that a

word or symbol is used temporarily stand-in for a number. For example, let's

say you are making a Part File to cut out a fancy grating for the front of a

series of cabinets. Sometimes you will be cutting this grating in 3/8" material

and sometimes in 1/2" material. There are dozens of Z plunges in the file and

you know you don't want to have to rewrite all these plunge values for

different depths of material. One way to deal with this problem is to use a

variable for the Z depth for the cut. Variables in ShopBot are always

designated with the use of '&' (ampersand) as the first character and are

created like: &Zdepth = -0.52 . Creating a variable like this at the start of a

file means that we have assigned the value of -0.52 to every instance of the

&Zdepth variable that follows in the file. So we would just write our Z plunges

like: MZ, &Zdepth . Then if we want to change the plunge depth in a file,

even though there may be numerous plunges, we only need to change the
one variable definition at the top of the file.

You also can define new user variables with mathematical expressions.

&MyVariable = 5.0

or

&MyNewVariable = &MyVariable * 2.31-2

Remember that variable names must have an & as the first character. The case of

the letters in the variable does not matter during ShopBot processing (internally all

variables are converted to upper case as they are processed). This means you can

put any of the lettering in a variable in upper or lower case, whatever helps it all

make sense to you. Letters and underscores are fine, but don’t use special

characters in variable names that might be confused with math symbols or Windows

folder designations (e.g. no “\” or “*” or “:”).

Variables in programming are often defined in terms of specific 'types' based

on what kind of numbers or character they are. For example, integer

variables, string variables, floating point variables, etc… However ShopBot

variables are a generic variable type that is handled behind the scenes as a

string variable or floating point number depending on what is appropriate in

 ShopBot Programming Handbook Page -8-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

the situation (similar to 'variant' data type for those familiar with Visual
Basic). This means you will not need to worry about variable typing.

When mathematical operations are carried out, if a variable can be made into

a number it is handled as a single precision floating point (7-8 digits

precision). If you use variables for counters and test for the end of the loop

with an IF test, then test with an ">" or "<" rather than an "=" because the

variable may not be stored as precisely the number you expect (i.e. a number

that you expect to be “1” might actually be “1.000001”).

Strings variables are not case sensitive. All characters in a string variable

become capitals internally. Strings can be entered with or without quotation
marks. For example:

 &MyString = test string 'string variable without quotes

 &MyString = "test string" 'or, string variable with quotes

Strings can be used for display, writing to files and some special functions. In most

cases, defining a string in either manner will work fine. You can combine (or

“concatenate”) strings using the & character, so if:

&firstname = Bill

Then if you have a line that reads:

&newstring = "My name is " & &firstname

the value of &newstring would be “My name is Bill”

Variables that are used in Part files are “persistent” and “global”, meaning that they

retain their value until that value is changed or the ShopBot software is shut down

and are available to any Part File that is run. This can be very handy for occasions

when you might want to use the same value for all the files in a session like possibly

&Zup for your safe Z-axis position. This also means, though, that if you use a

variable that has been used in a previous file, you will need to be sure that you know

it’s value. The safest way to do this is to define all variables at the beginning of a file

by giving them a value, a process referred to as “initializing.” This also conveniently

documents for you the list of variables that are used in any particular file.

 ShopBot Programming Handbook Page -9-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

System Variables

In addition to user variables, you can access certain ShopBot System

Variables. These are variables maintained by the software and related to tool

setup and operation. These values are accessed by a "%" (percent sign)

followed by a number in parentheses (e.g., %(5)) and can be inserted where

any value or parameter could normally be inserted in a file. Any system

variable that involves a distance value (like the X-axis location) will be in the
current user units

Here’s an example of getting the current Y location (in the current user units;
inches or mm):

&Y_now = %(2)

ShopBot System Variables are frequently expanded and updated. The current

System Variable list is provided at the end of this manual and updates can be

found in the “Program Files\ShopBot\Developer Tools” folder after installing
the ShopBot software.

 ShopBot Programming Handbook Page -10-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

Types of Program Statements

All ShopBot Commands can be used in a Part File. In addition, a number of Program

Statements are available for your use in enhancing the functionality of Part Files. These

programming statements are modeled after statements in the BASIC programming

language. We plan to continually add BASIC-like functions and control statements to

ShopBot’s capabilities. Here we provide a brief description of current programming

statements by category. The subsequent section provides a detailed alphabetical reference

to programming commands.

Control/Flow Statements
These are statements that direct the action during the execution of a Part
File, moving it from one place to another and stopping and starting it.

GOTO >sends action elsewhere

GOSUB ... RETURN >sends action to subroutine and

returns it

PAUSE >pauses a file

END >ends a file

EXIT SHOPBOT >ends a file and exits ShopBot

Conditional Branching Statements
These are statements that perform a logical test or check for an Input Switch

event and then appropriately re-direct the action in the Part File if something

has happened.

IF ... THEN >logical IF test

ON INPUT >handles detection of an Input Switch

 change

Input/Output Statements
Control what is displayed or entered on the File Display line at the bottom of

the the screen during the running of a Part File.

INPUT >get input from user/keyboard

PRINT >display a message or variable on the

 screen

' (or) REM >comment in file that can optionally

 be displayed

MSGBOX >display a Windows style message box

WARNING OFF >turn off warning light display

PLAY >play a sound or audio recording to

 alert the Operator (or just for fun)

 ShopBot Programming Handbook Page -11-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

File Statements
Statements used to manage input and output to files that are opened within
and during the action of a Part File.

OPEN ... CLOSE >open or close a specified file

INPUT #_ >get information from the file

WRITE #_ >put information in the file

 ShopBot Programming Handbook Page -12-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

Reference: Part File Programming Control

Statements

For consistency and clarity, here we use upper case letters for Programming Statements

and ShopBot Commands. However, in the actual processing of a Part File case is ignored. So

in the files that you write, you can use upper or lower case letters, or any combination of

them. In the following section, programming statements are in upper case letters, variable

or parameters are in italics, and variable or parameter choices are separated by '|'s, and
optional functions are in braces ('{'s).

CLOSE {#(openfilenumber)}

Closes a file that has previously been opened with OPEN statement. If used

without the (#openfilenumber) then ALL open files will be closed

Be tidy and close files after you are finished using them. It is particularly

important when writing to a file to make sure all data is saved in event of a

subsequent crash. All user files are automatically closed when Part File

finishes.

Note: be sure to read about the OPEN statement further down this list

END

Terminates the execution of an individual Part File. It is sometimes useful in a

file to place an explicit END statement to stop processing and make certain

that processing can not move into a section of the Part file such as a section

that should only be entered with a GOTO or GOSUB. The use of an END

statement can also add clarity to understanding the flow of a program.

However, since Part Files are sequential and execute from the first line to the

last (unless redirected by a GOSUB or GOTO statement), an END statement is

not required in a Part File as the action of the file will terminate on execution

of the last statement. Note that an END statement in a nested Part File that is

being used as a sub-routine will end the execution of that File and return

control to the Command Prompt or the higher level Part File that started or

called it.

ENDALL

Terminates execution of all Part Files. In the case of nested files, ENDALL will

all files above and below the file in which the ENDALL statement occurs.

 ShopBot Programming Handbook Page -13-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

EXIT SHOPBOT

This statement will produce the termination of the Part File and the immediate

exit from the ShopBot software. This statement is useful for the situation

where the ShopBot software has been started by another program and has

started a file in ShopBot by passing the Part File name when SB.EXE was

called (see Developer's section below for details). When the ShopBot task is

completed and the EXIT SHOPBOT Program Command encountered, the

computer will leave the ShopBot Program and return to action in the calling

program.

GOSUB label

This statement is used to invoke a subroutine and causes execution of the file

to shift to the first line under the designated label where label: is the name of

a block of instruction and is positioned as the first line. Note that where the

label is actually used as the name of the block, it is followed by a colon, but it

is not followed by a colon in the GOSUB statement. The block of code is

terminated by the RETURN instruction, which causes execution to return to

the line immediately below the GOSUB statement.

GOTO label

Causes execution of the file to shift to the first line under the designated label

where label: is the name for a position elsewhere in the file. Note that where

the label is actually used as the name of the new position it is followed by a

colon, but not in the GOSUB statement.

IF statement to evaluate THEN ShopBot command | variable
assignment | GOTO label

This control statement does a logical test of a statement, and, if the

statement is "true," the statement executes a ShopBot command, assigns a

value to a variable, or branches to a label--whichever action is specified after

THEN. Statements to evaluate are in the form of "IF &Count = 20 THEN"

Moreover, the logical comparisons [= , >, < , AND, OR, NOT] all can be

used in the statement along with user variables, system variables, or

computed values. You can test your statements using the ShopBot Calculator

[UU] or F10 (-1 = "true"; 0 = "false"). You can then have various "action"

choices for the true case, including branching to another section of the file. If

you have any programming experience, this statement will be familiar to you.

If not, try playing around with it to get a feel for how it allows you to control

the flow of program execution. Also have a look how IF's are used in various

sample files (the ones whose filenames begin with S_ in the ShopBot Folder).

Note: An IF statement may contain only one logical test. For example,

you can not test IF &varA => &varB THEN … rather, you must check

 ShopBot Programming Handbook Page -14-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

for one logical condition at a time. For example, IF &varA > &varB

THEN …

See the section above on string variables for an explanation of how

explicit quotes must be used in IF tests of strings.

INPUT ”Optional Text Message” &variablename {
,&variablename, &variablename, etc… up to 10 variables}

Gets input from a user and assigns it to a variable. The “Optional Text

Message” is any text in quotes (without commas) and can be used to let the

operator know what sort of information is being requested. &variablename is

a ShopBot user variable that the file will store that input in, beginning with an

ampersand ("&"). The INPUT statement calls up a a message box for user

input that provides OK and Cancel buttons. OK places the value that the user

typed in the text box into the variable, and Cancel removes the box and ends

the program. If the variable exists, its value is overwritten; if it does not

exist, it is created. The user must separate input values with commas if more

than one value is being input. If the text box is empty and only one variable

is expected, it treats that variable as an empty string and continues. If more

than one variable is expected, one or more missing variables is treated as an

error, and an empty box is handled as a Cancel. In both cases the Program is

terminated.

There are two special cases for INPUT:

1. Including a variable in the Text Message of INPUT. If it is desirable, a

ShopBot User Variable can be used to display dynamic information within

the Text Message display. This is accomplished by putting a semicolon

immediately after the end of the Text Message. The INPUT statement will

have the form:

INPUT "You Entered - " & &variable & " Is this Correct? Y or N"; &test1

In this case the returned variable will be the response to the Y or N

question. The &variable needs to be defined prior to the INPUT call to

work correctly.

2. Including a default value in the INPUT Box. A default value can be placed

in the input box by defining it before the INPUT call and using colon in

front of the default variable name, which will be the first variable in the

list, occurring just before the of variables to be gotten from the user. This

INPUT statement takes the form:

INPUT "Displaying default value - ": &default, &newvar

In both cases, as with the standard INPUT, there can be up to 10 user

variables in the list of those being collected. The two special cases can be

combined, using the semicolon call of the dynamic variable processing first.

 ShopBot Programming Handbook Page -15-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

INPUT #(openfilenumber), &variablename { ,&variablename,

&variablename, etc }

Statement for reading data from a file that has been opened from within

thShopBot Part file with the OPEN for INPUT statement and having been

assigned an openfilenumber. Variables are assigned as they are assigned with

the INPUT Command. When all variables have been read, an open file should

be closed with the CLOSE statement.

label:

A label provides a marker in the file that serves as both a title of a section

and, more often, an entry point for a GOTO or GOSUB instruction. Labels can

be any word or single group of characters, but labels must exist on a line all

by themselves and have a colon (":") as their last character. See GOTO and

GOSUB above.

MSGBOX (body text, button type, title text)

The MSGBOX command creates a Windows style message box that can be

customized, and places the value of the button that was clicked into a user

variable named &msganswer.

The body text is the text that appears in the main part of the message box

and can be used to ask the User questions or give them information without

them having to type in an answer the way they would with the INPUT

statement. You can also combine strings with variables, either system or

user, to make a more descriptive message, using the rules for combining

strings in the “Strings” section above .

The only restriction for the body text is that I can not contain a comma.

The second message box parameter is the Button type and there are lots of

options to customize the look and action of the messagebox. The defaults

include…

 ShopBot Programming Handbook Page -16-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

These numbers (or the text options for the first 10) can be typed in as the

second parameter in the command just the way they are to get the default

message boxes. If you look at the table above you’ll see that the parameters

separate nicely into three groups. The first 6 define the button choices that

the operator will see, the second 4 define the icon that will appear in the box

to show the level of urgency, and the last 3 define which button has focus.

Adding the values of items from each group will let you create custom boxes.

For instance if you type “276” as the second parameter in the command

(4+16+256), it will create a message box with Yes and No buttons…a value of

4, a ‘critical” icon…a value of 16, and the second button (No) selected by

default…a value of 256.. Any incorrect value will default to 0, a plain OK Only

box.

The third parameter is the text that appears in the title block at the top of the

message box. Keep this short and sweet…there’s not much room…and don’t

include any “,” in the text.

So if you put this command in your file…

MSGBOX (Do you want to open the keypad?, YesNo, Start Keypad?)

…then when the file got to that line this box would appear…

When a button is clicked by the User, the vakue of that button is saved

Style parameter

0 (or “OKOnly”)

1 (or “OKCancel”)

2 (or “AbortRetryIgnore”)

3 (or “YesNoCancel”)

4 (or “YesNo”)

5 (or “RetryCancel”)

16 (or “Critical”)

32 (or "Question")

48 (or “Exclamation”)

64 (or “Information”)

256

512

768

Display

OK Button only .

OK and Cancel buttons

Abort, Retry, and Ignore

Yes, No, and Cancel buttons

Yes and No buttons

Retry and Cancel buttons.

Critical Message icon with OK button only.

Warning Question icon with OK button only.

Warning Message icon with OK button only.

Information Message icon with OK button

only.

Second button is default

Third button is default

Fourth button is default.

 ShopBot Programming Handbook Page -17-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

If the command was..

MSGBOX (You can not cut plywood that thick with that size

 bit!,16,Thickness problem!)

…the message box would look like this…

When a button is clicked in the message box , the “value” of that button is

saved as a string in a variable named “&msganswer” so that you can use it in

an IF test to act on the operator’s answer. The possible values for that

variable are…

 OK

 Cancel

 Abort

 Retry

 Ignore

 Yes

 No

…depending on the buttons that were available in the message box.

ON INPUT(switch# , 0 | 1 | 2 | 3) ShopBot command | variable

assignment | GOTO label

This control statement establishes an event handling process defining what is

to be done if action occurs for any Input Switch. Place in code before location

where input detection is desired. Define by Input Switch number and switch

condition whose occurence is to be detected; where 1 = ON and 0 = OFF.

Then provide simple instruction such as GOTO (a label) or setting a variable.

To explicitly clear the interrupt handling condition and instruction, use the

same defining condition for the switch, but leave the instructions blank.

After a switch interrupt has occurred, the interrupt is automatically cleared.

This prevents any unexpected reactivation (e.g. bounce) after the interrupt.

 ShopBot Programming Handbook Page -18-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

To use the ON INPUT interrupt again, it needs to be reset with the same ON

INPUT command.

Any change at any of the switches causes the ShopBot software to look for

instructions for handling that particular change or event. (The state for all 8

Input and Output Switches is displayed in “lights” below the location readouts

in the main red Location panel.) For example, if Input Switch #2 had just

been activated, and if you had set "ON INPUT(2,1) VA, 0.0" as the desired

response to this event (for example, the closure of a limit switch), then your

X axis location would be reset to 0 when the switch was triggered. In other

words, ON INPUT() sets up the instructions for what to do "in the event of " a

Switch closure (or opening). Switch # is the number of the input switch that

the instructions apply to. 1 or 0 indicates whether the instructions are for the

event of coming on (1) or the event of going off (0).

The instruction identifying the desired response can consists of a ShopBot

command, the assigning of a value to a variable, or branching to a label --

any one, but only one, of these actions. (The actions are similar to those

possible after an IF ... THEN statement.) The ON INPUT() statement typically

should be placed near the beginning of your file or before a procedure

segment. ON INPUT() itself does not cause execution of the instruction to

occur; it only establishes what to do if an Input Switch event occurs. That is,

technically it sets up 'event handling'. Note, too, that the action is not

triggered unless a change in condition actually happens. The event handling

that you specify in an ON INPUT() statement is active only for the duration of

the file execution. When control is returned to the main menu, the specified

ON INPUT() action is no longer active (although activation of the switches still

will be indicated on the panel if the switches are enabled).

If a move is being executed at the time of the occurrence of the ON INPUT

interrupt, motion will stop instantly (see the zzero.sbp routine for a good

example). If however, you would like a gradual, ramped stop, then use the

following switch conditions numbers, 3 = detect Input Switch coming ON and

executed a ramped stop before continuing with instruction, 2 = detect Input

Switch going OFF and execute a ramped stop before continuing with

instruction.

OPEN "path&filename" FOR {INPUT/OUTPUT/APPEND} AS
#{number}

ShopBot Files are sequential access text files and use standard BASIC syntax

to open a user file for various purposes. If your ShopBot file is going to write

to the file you should open it FOR OUTPUT, if you are going to be reading data

from it you should open it FOR INPUT, and if you want to add information to

an existing file without deleting it’s contents you should open it FOR APPEND.

If you open a file FOR OUTPUT and the file doesn’t already exist then the

ShopBot will create it, but if the file does exist the data in it will be

overwritten. If you need to preserve the data in the file then you may want to

either use another name or add your data to the end using the FOR APPEND

option.

 ShopBot Programming Handbook Page -19-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

The file number is the number you are assigning the file you are writing to

and is used by the WRITE and PRINT statements to identify which file to work

with. Up to 9 open files permitted (number = 1 to 9).

The path&filename can be a variable or specified file name. For

path&filename, the path can be relative as in…

OPEN "myfile.sbp" FOR OUTPUT as #1

…which will look for "myfile.sbp" in the current part file folder, or …

OPEN "myfolder\myfile.sbp" FOR OUTPUT as #1

…which will look in your current part file folder for a subfolder named

"myfolder" and then look there for “myfile.sbp”. You can also use the full path

to the file like…

OPEN "C:\myfolder\myfile.sbp" FOR OUTPUT as #1

It’s important to remember that any file that you’ve opened with the OPEN

statement should be closed when you’re finished using the CLOSE statement

PAUSE {seconds; or, UNTIL Input switch#, state}

Creates a pause in the execution of a Part File. The PAUSE Programming

Instruction is one function that you will find useful even if you don't get

deeply involved with the programming language features of ShopBot. Using

this Programming Instruction allows you to put a brief pause or a stop in the

execution of a Part File.

PAUSE #. The number after the PAUSE is the duration of the pause in

Seconds and should be accurate to about 1/100th of a second. For example,

programming a PAUSE 3 will cause a 3 second pause in the action and then

the file execution will continue. If you put a comment line with an apostrophe

just before the pause, that line will be displayed during the time the PAUSE is

in effect.

PAUSE. A PAUSE statement on a line without a number after it will cause the

execution of the file to stop indefinitely and a message box will appear with a

choice of two keys … "OK" to continue, or "Cancel" to end the Part File. If the

previous line is NOT a comment then the box will display "Continue?".

 ShopBot Programming Handbook Page -20-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

If the full line preceding the pause is a comment (') then this comment line

will be displayed in the box. For example, if you want the make sure that a

vacuum holddown pump is turned on before the file starts cutting you might

add the following to your file…

' Is the Vacuum Pump on? (Hit OK or ENTER when Ready to

 Continue)

PAUSE

When your program gets to this place in the file, a message will appear with

your message to check the vacuum pump, and your ShopBot would stop until
the OK button is clicked or the ENTER key is hit.

If you just want to notify the operator about something in the file, though,
without the operator having to act on it, you might :

 'Finished the first Cut-Out, Moving on to the Second

 PAUSE 5

Here the tool would stop for a 5 seconds while displaying the message, then
automatically continue to the next task.

PAUSE UNTIL works just like PAUSE (without a time) except that an Input

Switch can be used as the equivalent of the OK input button. For example,

programming PAUSE UNTIL 5, 1 will PAUSE until the OK button is entered

or the #5 Input Switch is closed. Any message in a preceding comment line

will be displayed as with the simple PAUSE instruction. Use a 0 to detect an
Input Switch opening, or 1 to detect a Switch closing.

By default, when motion is initiated after an Input Switch PAUSE, there will be

a warning and short wait, just like at the beginning of a file to provide a

safety interval. This can be eliminated by turning the wait off with [SW]

before the call to function, then restoring it. There is a sample file in the

SbParts folder (sample_for_switch.sbp) that illustrates.

PLAY path&wavfilename

Plays a .wav sound file. The statement will start the execution of the sound

and immediately proceed to the next instruction...if you do not want to

proceed until after the sound finishes, add an appropriate length PAUSE after

 ShopBot Programming Handbook Page -21-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

the PLAY statement. In the dev folder under ShopBot there is a helpful

program called "wavlength.exe" that will help select and time your sound

files.

PLAY path&wavfilename

 PAUSE time(sec)

For instance, if you wanted to play the Windows "Tada" sound somewhere in

your file and wanted the file to continue running while the sound was playing

you would add...

PLAY C:\WINDOWS\Media\tada.wav

 ...to the file. If you wanted the file to stop executing while the sound played
you would add..

PLAY C:\WINDOWS\Media\tada.wav

PAUSE 2

PRINT {variable or quote delimited text, variable or quote

delimited text, etc...}

The PRINT Statement will display a variable or text and forces the PartFile

Message Window to Display. If the first separator is a comma, this will be the

default item separator and will cause each item in the line to be separated by

a tab (5 spaces). A semicolon as the last character will suppress the line feed,

but if a comma is used first a semicolon in any other position will raise an
error.

If the first separator is a semicolon, this will be the default item separator but

will produce no separation in the displayed item unless the separation was

added as spaces as part of the print string. A semicolon as the last character

will suppress the line feed. A comma later on in the parameters will be
treated as an item to display. For example:

&firstvar = "My number"

PRINT &firstvar, " = 123,456 "

with a comma after "&firstvar" to separate the parameters will be split at the

commas and look like this...

 ShopBot Programming Handbook Page -22-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

With a semicolon separating the parameters like this...

&firstvar = "My number"

PRINT &firstvar; " = 123,456 "

it will look like this...

If a variable is used in a PRINT statement that hasn’t been given a value then

the variable name will appear in it’s place in the message screen.

The location and size of the message screen (measured in twips) can be

specified using the VD command, either from the keyboard or within a part

file. It can also be dragged to a new location and resized on the screen with

the mouse and the new location and size will be remembered. If you don’t

want the Message Window to display you can turn it off by setting the “Show
Comments” setting to 0 in the VD command..

 REM or more easily just, '

Indicates a Remark or as we refer to it here, a Comment line. You can

actually use either the letters REM or an apostrophe ('), but using the (‘) is

preferred. The text in a comment is not treated as a command and is ignored

during the running/cutting/execution of the file, even if the comment text

contains one of the Shopbot Commands

It is very helpful when creating Part Files to make notes for yourself in the file

so that when you look at it at some later time, what you've done will make

sense to you. This is a process that programmers call 'documenting'. To

make a note to yourself in a file, all you need to do is type in an apostrophe (

 ShopBot Programming Handbook Page -23-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

') and everything that follows it on that line will be ignored by the ShopBot

software when the file is executed. You can put in the apostrophe and make a

note to yourself about what a particular line, or portion of the file, is supposed

to be doing. You can put the apostrophe at the beginning of the line and use

the whole line for comments, or you can put it after a Command and make a

short note to yourself. If you want to make several lines of comments, put an

apostrophe at the beginning of each line. A full-line comment is displayed at

the bottom of the screen when a file is executing, so this is an easy way to

remind yourself of things while the file is operating (see the 'PAUSE'

instruction to learn how to make this display remain visible for as long as you

would like).

'This is an example of documenting a file
'You can use an apostrophe (or a REM) at start of a line
REM You can use an REM (or an apostrophe) at start of a line
'This file is to create a rectangle (written by me, 1/1/2000)
' ... none of the above effects the cutting of your file
' ... the line below is left blank for legibility

JZ, .5 'this line pulls the bit up
J2, 10, 10 'you can add a comment to a line
CR, 10, 5, , , , -.25, , , 1
 'You can indent lines or comments and add blank lines

'The End

RETURN

Causes Part File execution to return to the line that is immediately below the

GOSUB Statement that initiated action in a sub-routine. If you have placed

subroutines at the bottom of a Part File, you will want to put an END

statement before them to make sure that execution of the Part File does not
inadvertently flow into the sub-routine.

SHELL, "path and program and rest of command line (as single

string variable or in quotes)", {display option}, {async or sync

(use words ASYNC or SYNC)}

This Programming Statement that starts an external program. First parameter

gives the file to start (including path), followed as part of the same string with

any command line parameters/options. These parameters are those specified

by the program being called. They can be compiled into the string as ShopBot

variables using normal string concatenation.

The display options are: 0- hidden and focus hidden (don’t use this unless

you understand what you are doing; it’s a good way to lose control of the

computer); 1- normal focus and size (def); 2- minimized with focus; 3-

maximized with focus; 4- normal size, focus stays on ShopBot; 6- minimized,

focus stays on ShopBot.

ASYNC (def) or SYNC mode:

 ShopBot Programming Handbook Page -24-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

In normal ASYNC mode, the ShopBot part file will continue to execute after

the outside file has been called

In SYNC mode, ShopBot Part File will stop execution while called program

executes and control will not be returned to ShopBot until the outside

program is closed.

Examples:

 SHELL, “sbedit.exe c:\sbparts\sample_shopbot_logo.sbp”

 SHELL, “C:\windows\notepad.exe”, 1, SYNC

 &filepath = “c:\sbparts\sample_shopbot_logo.sbp”

 &run_this = “sbedit.exe” & &filepath

 SHELL, &run_this, 1, ASYNC

(Calling a Virtual Tool with variable:)
 &speed = 11500

 TR, &speed

 ShopBot Programming Handbook Page -25-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

WARNING OFF

Turns off the flashing warning display when it would be distracting, as it

might be during execution of sections of a file that involve no movement. Any

movement command turns the warning display back on.

WRITE #(openfilenumber)

Statement for writing data to a text file that has been opened from within the

ShopBot Part file using the OPEN FOR OUTPUT statement and having been

assigned an openfilenumber. An open file should be closed with the CLOSE

statement.

There are 2 options for the WRITE# statement…separating the items with

commas or with semicolons. See PRINT statement for examples of how this

works

WRITE #(openfilenumber), (data list, items separated by comma) ...

This is the standard way to use the Write statement. Separate each data item

with a comma and they will be evaluated and separated by commas in the

output file.

WRITE #(openfilenumber); (data list; items separated by semicolons)

... This is an alternative Write function in which all spacing characters are

suppressed except those explicitly supplied in data list. This version of the

Statement gives the most explicit control of punctuation in the output file

Notes: In both versions a semicolon as the last character will suppress the

line feed in the file being written to so that subsequent data will be added to

the same line.

So to generate &myVar = 23.5 in the output file you would use:

&someVar = 23.5

Write #1; "&myVar = "; &someVar

Or if you wanted to generate: M2, 23.5, 23.5 you would use

&someVar = 23.5

Write #1; "M2, "; &someVar; ", "; &someVar

Thus, the Write #?; version of the Statement (with a semicolon“;” after the

file number) gives the most explicit control of punctuation in the output file.

Alternatively, the last statement could have been produced more simply with:

 &someVar = 23.5

 Write #1, "M2", &someVar, &someVar

 ShopBot Programming Handbook Page -26-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

This means that you can not have a comma inside quotes if you’re using a

Write #?, Command (with a comma “,” after the file number) but you can

accomplish this using the more explicit controls of Write #?; (with a

semicolon “;” after the file number) ...

(The variations in the WRITE and PRINT statement may seem confusing

because the difference between the “;” and “,” versions are not immediately

obvious…they look like the same command unless you know to look for

them).

ADDITIONAL REGISTRY COMMANDS. The following ShopBot Programming

Instructions are provided to interact with the registry:

SetUsrVal, textvalue

Sets user-determined variable. Can be any text (or number) value

with the variable being saved to the registry as a string

-This value is not erased until done so by the user! (That is, it persists

even when ShopBot is closed and the computer turned off)

-The saved value can be text or a number

-When GetUsrVal is used to read from the value back, the registry

string is placed in the designated ShopBot variable as a variant (string

or number)

-The current value of uValue can be inspected in ShopBot using [UD]

SetUsrValClrd, textvalue

As for SetUsrVal, sets a user-determined variable. But this value is

automatically cleared at the end/beginning of each file. Value can be

any text (or number) value with the variable being saved to the

registry as a string

-The saved value can be text or a number

-When GetUsrValClrd is used to read from the value back, the registry

string is placed in the designated ShopBot variable as a variant (string

or number)

-The automatic clearing provides a “new file” flag that can be set to

“used” or other appropriate indication that some function or process

has been already been done once in a file. Value can only be inspected
while file is running.

SetSpindleStatus, 0-1

Sets ShopBot flag for Spindle Start-Up Dialog. If set to 0, then

indicates spindle is considered not active and Dialog should display. If

1, then spindle is considered active and spindle will restart without
dialog.

GetUsrVal, &any_ShopBotVariable_name
Retrieves previously set UsrVal to a ShopBot Variable. See above.

GetUsrValClrd, &any_ShopBotVariable_name
Retrieves previously set UsrValClrd to a ShopBot Variable. See above.

GetUsrPath, &any_ShopBotVariable_name

Retrieves path to User Data Folder (defined by Windows).

 ShopBot Programming Handbook Page -27-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

GetAppPath, &any_ShopBotVariable_name
Retrieves application path for ShopBot program.

GetPartFileName, &any_ShopBotVariable_name

Retrieves most recent Part File read. This will bring up name of Part

File from last session if no others have yet been run.

GetSpindleStatus, &any_ShopBotVariable_name

Retrieve the current SpindleStatus. 0 indicates the spindle is

considered not active. Next start will evoke the spindle-start dialog. 1

indicates spindle is considered active. See above.

There is a more extensive set of Registry Variables available to developers

who are using their own software to directly read and save to the registry or
command line system. See section below on “Windows Registry Interface”.

 ShopBot Programming Handbook Page -28-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

Additional Part File Programming Considerations

Movement Blocks

When a Part File is read by your ShopBot Software, the program's first priority is to

process all the tool movement commands in such a way that they can be most

efficiently and smoothly executed. To make execution smooth, as the software reads

through the file it accumulates tool movement commands and stores them into

memory in lists in an efficient pre-processed form. We call this stored list of moves a

'movement stack'. At the time the movement stack is being stored, the moves are

also analyzed to determine where acceleration and deceleration ramps should be

placed, and how other features such as 'tabbing' should be applied. Establishing the

movement stack is always the first priority of the software as files are read.

In most cases, arranging your file into movement stacks is completely handled by

ShopBot, so you won't need to think about it. However, in certain situations it can be

helpful to take control of how movement blocks are handled so we'll explain this
process here.

As a Part File is being read, when the first tool move is encountered (e.g. an M2) a

movement block is created. The software will then continue to read lines

accumulating movement instructions. No movement will be executed until the whole
stack has been read.

The end of the stack is determined by:

 1. Reaching an Command that is not a Move, Cut, or SwitchON
Command, or a special case Insert.

 2. Or, by reaching the end of stack memory.

After the stack is read, all the moves in it will execute. If the block is terminated by a

non-Move Command, then that next command will be executed. Following it, when a

new Move Command is encountered in the file, the next movement block will be

acquired and executed (e.g. a J2, is a Jog and not a Move; the Jog ends the present

stack and the stack is executed, then the Jog is executed as a single stack, point-to-

point move).

If reaching the limit of available memory punctuated the reading of the Part File,

then at the end of execution of the stack, the bit will be pulled to the 'Safe-Z' height

(if this feature is active). After the pull-up, an additional stack will be read and then
the bit will be re-inserted for cutting that stack of moves.

There are a couple of situation where you may wish to interrupt the automatic

handling of movement blocks. The [SC, 2] Command can be used to explicitly put a
stack-end and stack-restart [SC,2] at a specific location in a Part File.

The reason you may want to consider controlling stacks is because it may allow you

to prevent an interruption in cutting to load more of the file from occurring at

 ShopBot Programming Handbook Page -29-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

an awkward location. By placing SC,2's at locations in a file before memory is used

up by the current block, the block will be executed and a new one started. You can

thus force the blocking to occur at the location in the file where it will not have an
adverse effect on the cutting.

Structuring Your Files

Your efficiency in Part File creation, the speed of your de-bugging, and your ability to

reuse your Programming work will be enhanced by adding structural elements to
your programming.

First, layout your file with indents, labels and comments to make it as easy to read

as possible and to break it into logical chunks. Second, use Sub-routines to carry out

repetitive processes and try to write these subs in a generic way so that they can be

used in other work. Third, break projects into multiple Part Files that are called or

controlled by a master file. This will provide you with ready to use sub-Part Files for
your other projects.

Adding Setup Lines to the Start of a File

After you have created a Part File that does some type of cutting or machining for

you, you will want to consider putting a few setup lines at the beginning of the file,

particularly if this is a file you will use regularly. Because all ShopBot Commands can

be used in a Part File, you can put all the instructions that you might want to give to

configure your tool at the start of the file. For example, to make sure that your tool

is optimally configured for cutting the project, you may want to place Commands

that set the speeds, cutter size, or other features of ShopBot operation that you will
always use with this file:

 'Setup lines for this file

 VS, 1.25, .45, , 2.75, .80 'to set speeds

 VC, .25 'always a .25 in cutter for this file

 SA 'distances will be absolute

The “Header Writer” Virtual Tool in the ShopBot software makes it easy to add

header and footer information to your part files.

Troubleshooting difficulties in Part Files

When you are creating a Part File, you will no doubt have to debug it to remove little

errors that creep in a typos or, math or logic problems. Debugging can sometimes be

more difficult than the actual creation of the file itself ... and it is certainly less fun.

We have tried to provide helpful error messages, but it is sometimes difficult for the

software to detect why a Part File program fails. Here are some suggestions to help

make debugging a part file easier:

 ShopBot Programming Handbook Page -30-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

1. Break Part File projects into smaller Files so that you can test and correct them

individually in a more manageable size.

2. Use the PRINT and PAUSE Statements to display values of variables at various

places in your file to check to make sure that things are working as you think they

should.

3. Step through Files using the [FG] Command so that you can identify trouble

places.

4. Inspect the values of variables with [UL] to make sure they are what they should

be.

5. You should get similar results with MOVE and PREVIEW Modes. So it's probably

best to work out all complicated files in PREVIEW, before you run the tool.

 ShopBot Programming Handbook Page -31-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

Why We Have a ShopBot Part File Format ...

For those who are interested in such things, we would like to convey that the

reason for having a specific Part File format is to make the process of

producing, understanding, and maintaining your CNC files as easy as possible.

There is an industrial standard for CNC files. This standard is referred to as

'G-code'. Though we don’t promote it, the most recent versions of ShopBot

software will run G-code as well as ShopBot Part file code. However, G-code is

a language that was created in the days when cutting files were stored on

punched tape and its format was optimized for brevity. These origins have left

g-code unnecessarily arcane and difficult to understand when just inspecting

a file. Moreover, it is a very loosely implemented standard with virtually every

manufacturer using a different version and implementing it in idiosyncratic

fashions.

We felt that a Command language with mnemonically meaningful commands

which were the same Commands used for direct control of the tool offered the

best option for new robotics tool users. These types of Commands would be

easier to learn, easier to understand, and easier to use in everyday work,
whether at the keyboard or creating Part Files.

In addition, we believed that if additional functionality were provided as

'programming' instructions in the format of the BASIC language, it would

make them ready for use by anyone familiar with programming. This

convention would also provide a clear set of prescriptions for the format in

which functions should be added to the ShopBot control language. G-code has

very limited programming capability and that which it has is awkward to use
at best.

If you are already an experienced CNC programmer and prefer G-code or

have software that generates G-code just go ahead and run it on ShopBot.

Our converter [FC] also makes it possible to rapidly make a translation from a

G-code file to a ShopBot formatted Part File so that you can have the file in

this more useful format. You will probably find that when you inspect a Part

File, it will make perfect sense to you because it functionally resembles a G-

code file -- being primarily just a list of coordinates through which the tool is

moved.

Most popular CAM programs and design programs that generate toolpaths

now offer the option of outputting the more usable ShopBot Part File format.

In addition, at least one CNC Control system can already use the more easy

to work with ShopBot format. We expect that other CNC vendors will
increasingly also adopt the .SBP language.

The ShopBot Part File language, officially known as OpenSBP®, is not a

proprietary language. ShopBot has published it as an open standard and set

up a system for expanding and developing the standard. We expect to see it

increasingly integrated into user-oriented CNC systems.

 ShopBot Programming Handbook Page -32-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

ShopBot Log Files

By default, ShopBot software writes two different types of ‘log’ files. 1) A Part File log for

each Part File that is run, which tracks the utilization of that specific file. 2) An SbSystem

log that records the use of the ShopBot Control Software, the tool, and the files that are

run.

Part File Logs. If writing of Part File logs is enabled [VD], each time a Part File is run

whether in Move Mode or Preview, a record is made of that running and saved in the a file

with the same name as the Part File but with a “.log” extension. Each time the file is run,

the file is appended with the new information, which is contained in two text lines. Several

information items about the file are recorded as well as whether the file was terminated
before completion and what line the termination occurred.

SbSystem Log. If writing of the SbSystem log is enabled [VD], then when ShopBot is

started, closed, or files run, entries are appended into the log. The log is stored by default

as C:\Program Files\ShopBot\ShopBot 3\Bin\SbSys.log. This log file could be used to create

a system for monitoring use of the ShopBot. We have several ideas for additional

functionality in the system and dummy output values have been stubbed in, but are not yet
implemented.

There are 3 types of lines in the SbSys file. A) Start-up or mode switch line; B) Part File
line; C) Closing line.

A) The Start-up line has either “NFP” or “StartFile” as the first data entry, where NFP

indicates that the software was started normally and not by a command line call that

passed a file [see this system in next section]. A command line call startup will be

indicated by “StartFile”.

 The second data item indicates whether the start occurred into CUT or

PREVIEW mode

 5 data items follow that indicate the parameters passed if this was a

command line start, otherwise these parameters are empty

 Next items are TIME and DATE

 Empty data item

 Control Box Version if available

 Software Version

 Serial#, Operator, sys1,…, sys4 (FUTURE IMPLEMENTATION PLANNED)

 ~####### (an internal check number used by ShopBot)

B) The Part File line describes any Part File that is run by the software. It begins with

full path and name of the Part File.

 CUT or PREVIEW Mode

 Elapsed time

 Next is TIME and DATE

 Empty data item

 Control Box Version if available

 Software Version

 Serial#, Operator, sys1,…, sys4 (FUTURE IMPLEMENTATION PLANNED)

 ~####### (an internal check number used by ShopBot)

 ShopBot Programming Handbook Page -33-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

C) The Closing line is records when the Control system is exited. The first data entry

indicates the type of Close (NORMAL for a user close; or Type of close as set-up by a

command line startup [see below])

 “Total Time” -- just a printed term

 Elapsed time

 Next is TIME and DATE

 Empty data item

 Control Box Version if available

 Software Version

 Serial#, Operator, sys1,…, sys4 (FUTURE IMPLEMENTATION PLANNED)

 ~####### (an internal check number used by ShopBot)

Advanced Start-Up Information

From the beginning of ShopBot, we have sought to make our product open for use,

improvement, and modification by others and to make it highly adaptable to a range of

applications. We are working to support the use of our systems by outside developers in

several ways: One priority is to support those who are interested in creating non-parametric

and parametric design systems and cutting projects. For these developers, the functionality

of the Part File language and built-in cutting routines is the reason for this manual. We will

continue to expand the flexibility of our Part File language and the ease with which it can be
adapted to creative projects.

A second priority has been to make the ShopBot Control Software open for use by outside

programs. Along those lines, we have created two simple but powerful systems for allowing
outside programs to run and manage the ShopBot software.

Windows Command Line Options…Controlling the ShopBot
software from outside programs (a)

A ShopBot can be quite effectively started and run from other software (e.g. drawing

programs, CAM programs, custom interfaces). As such, the actual operation of the

ShopBot system can be almost transparent to the operator. Many companies have

created custom interfaces to ShopBot that allow an operator to interact with a
proprietary system that then runs the ShopBot when tool motion or action is needed.

The system works using the option for a “Command Line” startup of the ShopBot

software (Sb3.exe). A number of startup parameters help optimize the use of
ShopBot software, while the specifics of the required action are passed in a file(s).

Command line format:

SB3.EXE path&filename, Port, OpenMethod, timing, CloseMethod, DisplayMethod, Offset

Parameters:

 Path&Filename (can be sent with or without " "s)

 ShopBot Programming Handbook Page -34-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

 Port - (1 – 16) optional

 OpenMethod –

o 1 (default) = MOVE/CUT; with FP Fill-In Opened set to this file

o 2 = MOVE/PREVIEW; with FP Fill-In Opened set to this file

o 3 = (currently same as #2)

o 4 = MOVE/CUT; no stop for Fill-In

o 5 = MOVE/PREVIEW; no stop for Fill-In

o 6 = Only make file current Part File

 Timing (not used in Windows software)

 CloseMethod

o 0 (default) = No close after running passed file

o 1 = Close after file, but with confirm question

o 2 = Immediate close and exit from ShopBot at end of file

 DisplayMethod

o 0 (default) = whatever is current in shopbot.ini

o 1 = Force console on

o 2 = Force console off

o 9 = Force console to always be off (OEM version, no use of SB

Command Keys, must read file)

 Offset (Only applies if MOVE/CUT or PREVIEW with no stop for Fill-In

o 0 = no offset (default)

o 1 = Offset 3D
o 2 = Offset 2D

More information and examples can be found in the SBStarter folder in the Developer
Tools folder in the ShopBot install.

Windows Registry Interface…Controlling the ShopBot
software from outside programs (b)

For Developers we have provided a Windows Registry-based system for communicating

between an outside program and ShopBot.

STATUS FLAGS indicating ShopBot Status as binary coded info in single decimal byte:

 ORDER(&decimal value) [starting with lsd] FileRunning (1), PreviewMode(2),
KeyPadOpen(4), PauseinFile(8), StopHit(16), StackRunning(32)

 READ REGISTRY "ShopBot", "UserData", "Status", Single byte as Text
 -All bits cleared to "0" when ShopBot software starts

INPUT SWITCH FLAGS indicating Input Switch Condition [input switch 1 through 8;

binary coded in single decimal byte]

 READ REGISTRY "ShopBot", "UserData", "InputSwitches", Single byte as Text

OUTPUT SWITCH FLAGS indicating Output Switch Condition [output switch 1 through

8; binary coded in single decimal byte]

 READ REGISTRY "ShopBot", "UserData", "OutPutSwitches", Single byte as Text

 ShopBot Programming Handbook Page -35-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

AND using the Registry, a Standard ShopBot Command can be passed to ShopBot

from another program. The Command will be read and executed as soon as ShopBot

finishes executing any running PartFiles, and any Commands already sent via a
Command Line Pass (Method a, above).

The Command is PASSED FROM THE REGISTRY by setting:

 "ShopBot", "UserData", "uCommand", command

 -Where command is a two letter ShopBot Command followed by normally

 formatted ShopBot parameter settings.

 -The command is erased when it is read by ShopBot, and is always initially
 cleared when the software starts.

Two additional pieces of information are also available from the registry:

 “ShopBot”, “AppData”, “uAppPath”, fullpath
 -Provides the full path to the folder containing the current ShopBot.ini and Problem.log
 files.
 “ShopBot”, “UserData”, “uUsrPath”, fullpath
 -Provides the full path to the folder containing the current S3.exe file.

Virtual Tool System

ShopBot Software provides a system for installing Add-In Tools. These are Tools that

have been developed as standalone programs that use the Command Line option system

to control ShopBot. But in the case, the programs are additionally made available as

added Virtual Tools that will show up, and can be started by, the drop-down menus in

ShopBot. They can also be called from within Part Files by the using the designated two

letter commands. Optionally, a command line string can be passed to the Tool by adding
it as a parameter to the call from the Part File.

The “c:\Program Files\ShopBot\Virtual Tools\VirtualTools.ini” file provides examples of

how to set up a new add-in Virtual Tool that will be displayed and used in the ShopBot

software. Once and add-in is installed and working properly, it can be called from a Part
File like this:

[two letter command], parameter(s) (for the program)

Example (assuming the shortcut letter for the Tool is “C”):

TC, 1500, small, 2

ShopBot variables can be substituted for literal parameters, as:

TC, &some_value

 ShopBot Programming Handbook Page -36-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

System Variables [use as %(sys var#)]
SYS VAR #

VAR units

 1

Location X userUnits

2

Location Y userUnits

3

Location Z userUnits

4

Location a userUnits

5

Location b userUnits

 6

Base Coord X userUnits

7

Base Coord Y userUnits

8

Base CoordZ userUnits

9

Base Coord a userUnits

10

Base Coord b userUnits

 11

Min Table Limit X userUnits

12

Max Table Limit X userUnits

13

Min Table Limit Y userUnits

14

Max Table Limit Y userUnits

15

Min Table Limit Z userUnits

16

Max Table Limit Z userUnits

17

Min Table Limit a userUnits

18

Max Table Limit a userUnits

19

Min Table Limit b userUnits

20

Max Table Limit b userUnits

 21

DISTANCE 0-1

22

MODE 0-1

23

CUTTER Dia userUnits

24

SW Delay sec

25

UNIT 0-1

26
 27

Number of Axes 3-5

28

Safe_Z userUnits

29

Safe_A userUnits

30

Number of Axes to Ck
Lim 1-5

 31

WUx single

32

WUy single

33

WUz single

34

WUa single

35

WUb single

36

Driver Channel 1 XYZA or B

37

Driver Channel 2 XYZA or B

38

Driver Channel 3 XYZA or B

39

Driver Channel 4 XYZA or B

40

Driver Channel 5 XYZA or B

41

Tabbing Dist UP single

42

Tabbing Dist Next single

43

Tabbing Size single

44

Tabbing Lead Size single

 ShopBot Programming Handbook Page -37-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

45
 46

Inp #3 Mode 0 - 1

47

Inp #4 Mode 0 - 1

48

Software Version string

49

Firmware Version integer

50
 51

Inp #1 0-1

52

Inp #2 0-1

53

Inp #3 0-1

54

Inp #4 0-1

55

Inp #5 0-1

56

Inp #6 0-1

57

Inp #7 0-1

58

Inp #8 0-1

59
 60

Current File Name string

61

X Offset Current File single

62

Y Offset Current File single

63

Z Offset Current File single

64
 65
 66

X Proportion Current File single

67

Y Proportion Current File single

68

Z Proportion Current File single

69
 70

 71

MoveSpeed X userUnits

72

MoveSpeed Y userUnits

73

MoveSpeed Z userUnits

74

MoveSpeed a userUnits

75

MoveSpeed b userUnits

76

JogSpeed X userUnits

77

JogSpeed Y userUnits

78

JogSpeed Z userUnits

79

JogSpeed a userUnits

80

JogSpeed b userUnits

81

MoveRamp X userUnits

82

MoveRamp Y userUnits

83

MoveRamp Z userUnits

84

MoveRamp a userUnits

85

MoveRamp b userUnits

86

JogRamp X userUnits

87

JogRamp Y userUnits

88

JogRamp Z userUnits

89

JogRamp a userUnits

90

JogRamp b userUnits

91

Mode Input #1 0-4

92

Mode Input #2 0-4

93

Mode Input #3 0-4

94

Mode Input #4 0-4

 ShopBot Programming Handbook Page -38-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

95

Mode Input #5 0-4

96

Mode Input #6 0-4

97

Mode Input #7 0-4

98

Mode Input #8 0-4

99

Torch Height 0-1

100

Full Output Byte byte

101

status Out #1 0-1

102

status Out #2 0-1

103

status Out #3 0-1

104

status Out #4 0-1

105

status Out #5 0-1

106

status Out #6 0-1

107

status Out #7 0-1

108

status Out #8 0-1

109

Mode # 4 -1 to -4

110
 111

Mode Output #1 0-5

112

Mode Output #2 0-5

113

Mode Output #3 0-5

114

Mode Output #4 0-5

115

Mode Output #5 0-5

116

Mode Output #6 0-5

117

Mode Output #7 0-5

118

Mode Output #8 0-5

119

Mode Output #9 0-5

120

Mode Output #10 0-5

121

Mode Output #11 0-5

122

Mode Output #12 0-5

123

IndexerON 0-1

124

Analog Input #1 0-9

125

Analog Input #2 0-9

126

Inp #9 0-1

127

Inp #10 0-1

128

Inp #11 0-1

129

Inp #12 0-1

130

Elapsed Time long

131

Mode Input #9 0-4

132

Mode Input #10 0-4

133

Mode Input #11 0-4

134

Mode Input #12 0-4

135

Upper Output Byte byte

136

status Out #9 0-1

137

status Out #10 0-1

138

status Out #11 0-1

139

status Out #12 0-1

140
 141

Z/A Trigger ON Thresh dist

142

Z/A Trigger OFF Thresh dist

143
 144

Location c userUnits

 ShopBot Programming Handbook Page -39-

SBG00314150707ProgHandWin.doc Copyright 2015 ShopBot Tools, Inc

145

Base Coord c userUnits

146

Date string

147

Time string

148
 149
 150

Step InterVal Divider
 151

Multiplier X 0-10

152

Multiplier Y 0-10

153

Multiplier Z 0-10

154

Multiplier A 0-10

155

Multiplier B 0-10

156

Multiplier C 0-10

157

158

Current uController
Voltage 0-9

159

Current uController
Temp Centegrade

160
 161

RPM Spindle string

162
 163
 164
 165
 166
 167
 168
 169
 170

xxxx current max xxxx

